Исследованиями определено, что относительная газообильность от абсолютной, по шахтам Кузбасса, так же изменяется по степенной зависимости. Полученная закономерность комплексной газообильности справедлива для изученных добычных объектов (шахты в целом, шахтопласта, крыла и очистного забоя).

В каждом угольном районе Кузбасса существует своя совокупность горно-геологических и горнотехнических факторов, которые определяют величину оптимальной газообильности. Значения ее для шахт Кузбасса находятся в диапазоне от 4,2 до 31,2 м3/мин (м3/т), при средней величине 20,8, т.е. разнятся в 7,5 раз. В то время, как соответствующая ей величина интенсивности добычи угля изменяется от 0,84 до 1,21 т/мин, т.е. всего в 1,4 раза. Проведенные исследования показывают, что с учетом оптимальной величины комплексной газообильности и интенсивности добычи угля можно научно-обоснованно прогнозировать деление шахт по степени их газоопасности.

Список литературы

- 1. 1. Ушаков, К. 3. Аэрология горных предприятий: учебник, / К. 3. Ушаков [и др.]. М.: Недра, 1987. 421 с.
- 2. Правила безопасности в угольных шахтах (инструкции). Утв. постан. Госгортехнадзора РФ №67 от 30.12.1994. Самара. 1996. 356 с.

УДК 502.3

С.В. ДУБИНИН, зав. сектором оценки риска аварий и предупреждения ЧС

А.С. КАЗАКОВ, ведущий инженер-гидротехник (Новационная фирма "КУЗБАСС-НИИОГР") **С.П. БАХАЕВА**, д.т.н., профессор (КузГТУ, г. Кемерово)

ОБ ОЦЕНКЕ УЩЕРБА ЗЕМЕЛЬНЫМ РЕСУРСАМ ПРИ ОТСУТСТВИИ НАПОРНОГО ФРОНТА НА ДАМБУ НАКОПИТЕЛЯ ЖИДКИХ ОТХОДОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Исторически сложилось, что нельзя рассматривать какую-либо отрасль народного хозяйства без взаимосвязи с другими. Так в состав объектов, эксплуатируемых угольными предприятиями, входят гидротехнические сооружения (ГТС) различного назначения.

Одной из задач, решаемых посредством строительства и эксплуатации гидротехнических сооружений, является прием и

IX Международная научно-практическаяконференция Природные и интеллектуальные ресурсы Сибири

накопление, отходов, образующихся в результате обогащения каменного угля.

В подавляющем большинстве случаев размещение отходов обогащения осуществляется в накопители, образованные за счет строительства ограждающих дамб из грунтовых материалов. Практика эксплуатации и статистика аварий таких сооружений показывает, что они далеки от идеальных с точки зрения безопасности.

Наиболее тяжелыми последствиями характеризуются гидродинамические аварии, связанные с выходом из строя (разрушением) дамбы или ее части, и неуправляемым перемещением больших масс воды, несущих разрушения и затопления обширных территорий.

На ряде сооружений непосредственный напор воды на ограждающую дамбу из-за намытого пляжа отсутствует, следовательно, гидродинамическая авария на данных объектах является событием маловероятным. Однако это не означает, что такие сооружения безопасны, т.к. на них могут произойти другие аварии, связанные, например, с испарением, возгоранием, пылением отходов или оползанием низового откоса из-за потери устойчивости и растеканием хвостов по прилегающей к накопителю территории нижнего бьефа.

декларирования безопасности В рамках гидротехнических сооружений гидроотвала отходов флотации филиала ОАО "Южный Кузбасс" – Управление по обогащению и переработке угля (ЦОФ "Сибирь"), хвостохранилища № 2 Абагурского филиала ОАО "Евразруда" и гидрозолоотвала котельной Казского филиала ООО "Шерегеш-Энерго" и др. сооружений при выполнении расчета вероятного вреда от аварии на данных объектах рассмотрены сценарии развития событий и связанные с потерей устойчивости последствия, низового откоса ограждающей дамбы.

При оползании низового откоса дамбы хвостохранилища № 2 Абагурского филиала ОАО "Евразруда" и гидрозолоотвала котельной Казского филиала ООО "Шерегеш-Энерго" прогнозируется перекрытие оползшим грунтом водотока. В первом случае будет перекрыто русло нагорной канавы, истоком которой является р. Кондома, а во втором – русло реки Большой Каз. В этом случае произойдет подпор воды, подтопление прилегающей территории, при этом в водоток попадут взвешенные вещества в количествах, превышающих предельнодопустимые концентрации.

Величина ущерба земельным ресурсам в случае оползания низового откоса дамбы определяется величиной ущерба из-за платы за несанкционированное размещение на территории зоны возможного воздействия (в границах языка оползня) отходов пятого класса опасности – грунта тела дамбы.

Ущерб, нанесенный почвам из-за несанкционированного размещения на территории зоны возможного затопления (воздействия) отходов ($YIII_{OTX}$) определяется согласно "Методике исчисления вреда, причиненного почвам как объекту окружающей среды" (утв. Приказом Минприроды России от 08.07.2010 № 238; зарег. в Минюсте РФ 07.09.2010 № 18364) по формуле:

$$VIII_{omx} = \sum_{i=1}^{n} (M_i \times T_{omx}) \times K_{ucx} \times K_{uhd}$$
,

где УЩ $_{\rm OTX}$ — размер вреда, руб.; $M_{\rm i}$ — масса отходов с одинаковым классом опасности, тонна; n — количество видов отходов, сгруппированных по классам опасности в пределах одного участка, на котором выявлено несанкционированное размещение отходов производства и потребления; $K_{\rm ucx}$ — показатель в зависимости от категории земель и целевого назначения, на которой расположен загрязненный участок; $T_{\rm otx}$ — такса для исчисления размера вреда, причиненного почвам как объекту окружающей среды, руб./тонна; $K_{\rm инд}$ — коэффициент индексации нормативов платы за негативное воздействие на окружающую среду с 2010 года на год выполнения расчетов.

Согласно указанной Методике, плата за размещение у подошвы откоса одной тонны оползшего грунта (практически неопасные отходы), без учета повышающего коэффициента $K_{\text{исх}}$, составит 4440 рублей в ценах 2012 года.

Таким образом, ущерб окружающей природной среде, который в соответствии с законодательством Российской Федерации подлежит возмещению в полной мере, в случае аварии на ГТС от размещения грунта у подошвы низового откоса после стабилизации оползшего массива, даже без учета других социально-эконономических последствий аварии ГТС, будет существенен (см. табл.) и позволит характеризовать аварию, связанную с оползанием низового откоса ограждающей дамбы, как чрезвычайную ситуацию.

Таблица - Результаты расчета ущерба земельным ресурсам (почвам)

Объект	$M_{ m i}$, тонн	Т _{отх} , руб./т	Кисх	УЩ _{ОТХ} , руб.
Гидроотвал отходов флотации ЦОФ "Сибирь"	28 500	4 440	1,0	126 540 000
Хвостохранилище № 2 Абагурского филиала ОАО "Евразруда"	19 527	4 440	1,0	86 699 880
Гидрозолоотвал котельной Казского филиала ООО "Шерегеш-Энерго"	1 955	4 440	1,0	8 680 200

Своевременная и многофакторная оценка возможных последствий в случае аварии ГТС позволит создавать в достаточном объеме финансовые и материальные резервы, предназначенные для ликвидации аварии.

УДК 622.411.33(511.32)

Е.Н. ФЕДОТОВ, студент. (НИ ТГУ, г. Томск)

ТЕХНОЛОГИЯ ДОБЫЧИ МЕТАНА НА ШАХТЕ ЛЮЧЖУАН, КОМПАНИЯ «SDIC XINJI ENERGY COMPANY LIMITED», ПРОВИНЦИЯ АНЬХОЙ, КНР

Шахта Лючжуан — это угольное предприятие, расположенное в Хуайнаньском угольном бассейне провинции Аньхой, Китай. Шахта принадлежит государственной компании «SDIC XINJI ENERGY COMPANY LIMITED» [1.С 6].

С 2007 г на предприятии осуществляется проект по извлечению метана. Объем добычи газа за период с 2007 г. по январь 2012 г. составил 24,7 м.³/мин., но его утилизация не проводилась из-за низкой концентрации метана 7-10%, в связи с чем, весь добытый газ выбрасывался в атмосферу. Прежняя технология не позволяла повысить объем и концентрацию добываемого газа [1.С 6].

Из-за заинтересованности в повышении качества добываемого метана и обеспечении безопасности горных работ компанией, при поддержке партнерства «Метан на рынки» и Агентства по защите окружающей среды США, был разработан проект по улучшению технологии извлечения метана из угольных пластов (рис. 1). Реализация проекта началась в январе 2012 г. и продлится до декабря 2034 г [1.С 6].

Рис. 1. Схема бурения скважин текущей дегазации на шахте Лючжуан.